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Abstract 

The relative orientation of the lattices of two neigh- 
bouring grains of the same phase can be described 
by a rotation R. It can be decomposed as a product 
R = R.RII of two rotations with axes perpendicular 
and parallel to a given direction. This direction is 
chosen parallel to the principal symmetry axis in the 
case of hexagonal, rhombohedral  or tetragonal 
lattices. The parameter e introduced by Bonnet & 
Durand [Philos. Mag. (1975). 32, 997-1006] to des- 
cribe the deformation connected with approximate 
coincidence in such lattices satisfies e = A  sin @, 
where A is the relative deviation between the experi- 
mental and the coincidence value of the axial ratio 
c~ a and @ is the angle of Rx. Addition of the value 
of sin @ to tables of coincidence rotations makes it 
possible to compute e in a simple manner for any 
experimental value of c/a.  

1. Introduction 

The success of the coincidence model of grain bound- 
aries in cubic materials has led to the systematic 
determination of all the rotations that leave a large 
portion 1/,~ of the symmetry translations invariant. 
Such rotations are called coincidence rotations with 
multiplicity 2. 

The coincidence model has been extended also to 
hexagonal, rhombohedral  and tetragonal lattices. 
[See Warrington (1975), Bonnet, Cousineau & War- 
rington (1981), Bleris, Nouet, Hag~ge & Delavignette 
(1982), Grimmer & Warrington (1985) and Grimmer 
(1989b) for hexagonal lattices, Doni, Fanides & Bleris 
(1986) and Grimmer (1989a, d) for rhombohedral  
lattices, Erochine & Nouet (1983) for tetragonal lat- 
tices.] In these cases, a coincidence rotation with axis 
n and angle O has a multiplicity that is independent 
of the axial ratio r = c~ a of the lattice if either n is 
parallel to the principal (i. e. 6-, 3- or 4-fold) symmetry 
axis of the lattice or O = 180 ° and n is perpendicular 
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to the principal axis. All other rotations can have a 
small value of 2 only for certain rational values of 
r 2. The former type of coincidence rotation is called 
common or exact, the latter specific or approximate 
because the coincidence of translation vectors is only 
approximate if the experimental value re slightly devi- 
ates from the specific value r for which the rotation 
has a low value of E. Low energy boundaries are 
expected between grains in an exact orientation or in 
a specific orientation if re = r. 

If re ~ r of the specific orientation then the bound- 
ary must contain secondary dislocations in order to 
locally preserve the structure of a coincidence bound- 
ary. The minimum density of dislocations is related 
to the deformation parameter e introduced by Bonnet 
& Durand (1975). The purpose of this paper is to 
derive an analytic expression for e if the relative 
deviation between the specific and experimental 
values of the axial ratio is small, i.e. A = [r - re[/ re "~ 1. 
In order to show the connection between e and A, 
the coincidence rotation R is decomposed as follows: 
R = R±RII , where R± and Rll are rotations perpen- 
dicular and parallel to the principal axis. It is shown 
that the angles • of R± and ~ of Rll can be chosen 
smaller or equal to the angle ~9 of R and that e = 
A sin ~. 

2. The splitting of a rotation R into two rotations with 
axes parallel and perpendicular to the principal 

axis, R = R±Rll 
Each rotation R may be considered as a right-handed 
rotation by an angle O = 20 satisfying 0-< O-< 180 ° 
about an axis characterized by a unit vector n. 
Introducing an orthonormal coordinate system, one 
obtains n = (hi ,  n2, n3) with n 2+ n 2+ n 2 = 1. The 
rotation R can be characterized by a pair of unit 
quaternions 

R¢:~ +(ao, al ,  a2, a3) 

= +(cos 0, n~ sin 0, n 2 sin 0, n3 sin 0). (1) 
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Notice that 

ao 2 + a  2+a22+a 2= 1. 

Let us show that R can be decomposed as 

R = R.RII , (3) 

where RII and RI  are rotations with axes parallel and 
perpendicular to a fixed direction. This decomposi- 
tion is unique unless ao = a3 = 0. We shall also show 
that the angles • = 2q~ of R± and aF - 2~0 of RII satisfy 
cos ~o cos ~O = cos 0. We choose the fixed direction 
parallel to the principal (6-, 3- or 4-fold) symmetry 
axis of the hexagonal, rhombohedral or tetragonal 
lattice and let it coincide with the third axis of our 
orthonormal coordinate system. It follows that 

RIle:> +(cos ~b, 0, 0, sin 0). (4) 

Consider R ' =  RR~ 1. We shall see that R'  is of type 
R± for a uniquely defined value of ~ and that for 
this value of ~ the half-angle ~ of R'  takes its 
minimum value. The law of quaternion multiplication 
(see e.g. Grimmer, 1974) gives 

R'=  RR-(lCz>+(ao, al, a 2 ,  a 3 ) ( c o s  ~, 0, 0,--sin qJ) 

= +(ao cos ql+ a3 sin q/, al cos qJ - a2 sin q~, 

a2cosO+als inO,  a3cosO-aosin~b) .  (5) 

The rotation R'  is of type R~ if and only if a 3 COS ~b = 

ao sin ~b; R'  considered as a function of @ has mini- 
mum angle if ao cos @ + a 3 sin @ is maximal, i.e. if 

0 = d (ao cos qJ+ a 3 sin q/)/dql = -ao  sin ql+ a 3 cos fit. 

Both conditions give tan qJ = a3/ao, i.e. 

cos ff = ao/ ( a 2 + a ] ) 1/2 

and 
sin ~ = a3/ ( a 2 + a 2) 1/2. 

The half-angle ¢ of R ' =  R± then becomes 

c o s ¢ = a o c o s q / + a 3 s i n ~ b = ( a 2 + a ] )  1/2. (7) 

It follows from cos 0 = ao that 

cos ~ cos ~ = cos 0, 

i.e. cos ~ -- cos 0 and cos ~b >- cos 0. This implies ~p - 0 
and ~-< 0 because 0-< ~, ~b, 0 -  90 °. The splitting 
R = R±RII can be expressed as follows in terms of 
unit quaternions: 

(ao, al ,  a2, a3) 

=(a02+ a~)-l/2(a2+ a 2, aoal-a2a3,  aoa2+ ala3, O) 

(a 2 + a2)-l/2(ao, 0, 0, as). (9) 

3. Application to coincidence rotations; computation 
of the deformation parameter e 

Consider first a hexagonal lattice with axial ratio 
r= c/a. We change from orthonormal to crystal 

coordinates with 

(2) [ell=le=l=a, [e3l=c, ele3=e2e3=o, ele2=-a/2 

and from quaternions to hexagonal quadruples as in 
Grimmer & Warrington (1987). The hexagonal quad- 
ruple (m, U, V, W) describes a rotation with axis 
[ U, V, IV] and half-angle 0 given by their equation 
(26) as 

tan 0 = { [ ( U  2 -  U V +  V2)+r2W2]/3r2m2}I/2, (10) 

obviously independent of the normalization of the 
quadruple. The splitting R = R±RII becomes in terms 
of (not normalized) quadruples 

(m, U, V, W ) = [ 3 m 2 +  W 2 , 3 m U + ( U - 2 V ) W ,  

3 m V + ( E U -  V) W, 0](m, 0, 0, W). 

(11) 

It has been shown in that article that R is a coin- 
cidence rotation if and only if all four components 
of its hexagonal quadruple are integral multiples of 
some real number and if in addition either r 2 is 
rational or the inner two or the outer two components 
of the quadruple vanish. A coincidence rotation with 
quadruple of type (m, 0, 0, W) or (0, U, V, 0) is always 
of the common type. Because e = 0 for common rota- 
tions we need not consider these cases any further. 

If r 2 is rational and R a coincidence rotation, i.e. 
if all four components of its quadruple are integral 
multiples of some real number then the same holds 
also for R± and RII according to (11). A similar 
argument holds for rhombohedral and tetragonal 
lattices. 

It remains to compute e. Let R = R±RII be a coin- 
cidence rotation of a lattice G~ with r E rational. RII 

(6) maps G~ onto (3, R± maps G onto G2, 

RII R± 
GI >G >(32. 

Let UI be the lattice consisting of the vectors that are 
common to G~ and G, U~ = G~ n G, and let 2;i be its 
multiplicity. Analogously, let 2;2 be the multiplicity 

(8) of U2 = G2 :~ G, and 2; the multiplicity of U = UI n 
U2.* A primitive cell M of U is therefore simul- 
taneously a cell of G~, G and G2 with a volume 
times larger than the volume of primitive cells of these 
three lattices. Since the vectors of a lattice form an 
Abelian group, it follows from the 'first theorem on 
group isomorphisms' (van der Waerden, 1966) that 
2; is a factor of2;~. 2~2, a multiple of 2;1 and a multiple 
of 2;2" 

The lattice G~ with axial ratio r can be obtained 
from a lattice G~ of the same Bravais type but with 
the experimental value re of the axial ratio by an 
elongation D1 in the direction of the principal 

* Not ice  tha t  $ is a mul t ip le  o f  the mult ipl ic i ty  ~ o f  the  lattice 
G t n G 2 . 
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symmetry axis by an amount 

8 = ( r - r e ) / r e .  (12) 

The transformation D1 gives the cell M as the image 
of a cell M, of G~. Also, lattice G has a cell M. 
Reversal of the elongation in the direction of the 
principal axis leads back to M, because the principal 
axis remained unchanged under RII. However, revers- 
ing the elongation in the direction of the principal 
axis of lattice (32 transforms its cell M into a cell M2. 
In order to determine the linear transformation A 
mapping M, into ME it suffices therefore to consider 
the component RI of R. 

Fig. 1 shows the plane perpendicular to the axis of 
R j_ and containing the axis of RII. A right-handed 
orthonormal coordinate system with y axis along RII 
is chosen in this plane. The transformation Dt has 
an invariant plane perpendicular to the axis of RII. 
This plane may be chosen to pass through the point 
O, where the axes of RII and R± intersect. The map- 
pings D~ and R± are represented in this coordinate 
system by the following matrices* 

(10 0 ) (cosqb  s i n ; )  
D ,=  1+8 ' R±=\_sinqO cos " 

The mapping D2 that transforms M into ME is rep- 
resented in the primed coordinate system of Fig. 1 
by the inverse of the matrix D,: 

0 
D~=(10 (1 + 8)-1) = R.LDERT 1. 

The mapping A that transforms M, into M2 is given 
by 

A = DED, = Ri'D~R±DI 
= (  (1 + 8 COS2 qb)(1 + 8) - '  8 sin • cos ~ 

(8 sin ~P cos ~)(1 + 8)- '  1 + 8 sin 2 qb ]" 

The eigenvalues A of A satisfy det(A-AI) = 0, I the 
identity matrix, i.e. 

A2-2[1 + 8 2 sin 2 ~/2(1 + 8)]A + 1 = 0 
o r  

A = 1-1- 
82sin2@ { [ +  l + ~ s i - - n ~ 1 2 - 1 } ' / 2  
2(1 + 8) 2(1 + 8) J 

Because only those specific rotations are of interest 
for which 18[ < 1, it is sufficient to consider terms up 
to first order in 8: 

A:(a,, a,2)_~( 1 - S s i n 2 q  b 8 s i n ~ c o s ~  
\ a2, a22] 8 sin • cos 9 ~ 1 + 8 sin 2 • ] 

and A "~ 1 + 8 sin ~. In this approximation, the matrix 
A is symmetric and describes a pure (i.e. rotation- 
free) deformation. The eigenvectors v of A satisfy 

* D and D' are used to denote the matrices representing a 
mapping D in the coordinate systems xy and x'y', respectively. 

(all--A)Vx+al2Vy=O, from which it follows in our 
approximation that 

vy/vx - (sin ~ +  1)/cos q~ =tan (q~/2 + 45°). 

Taking also the direction perpendicular to the plane 
of Fig. 1 into account, we introduce a new orthonor- 
mal coordinate system as follows. The axes are chosen 
in the direction of eigenvectors arranged in the order 
of increasing eigenvalues. Put A = 18[. The first and 
third axes lie in the plane of Fig. 1 and have eigen- 
values A , = I - A  sin • and A 3 =  1"4 -A sin ~, respec- 
tively, the second axis lies perpendicular to that plane 
and has eigenvalue A2 = 1. Expressed in this coordin- 
ate system A has the form 

(1-Asinq~ 0 0 \ 
A =  0 1 0 ) .  

0 0 1 + A sin q~ 
Let us compare this result with the general result of 
Bonnet & Durand (1975) and Bonnet & Cousineau 
(1977), valid also for boundaries between different 
phases of arbitrary symmetry. They write A as 

A = RoD, 

where Ro is a rotation and D a pure deformation. 
Using an orthogonal coordinate system as described 
above they obtain 

D = 1 + e2 0 with el - e2 -  e3. 

0 l+e3 

If the cells MI and ME have equal volumes then 
8t + e 2 +  83 -- 0. For boundaries between grains of the 
same phase with a hexagonal, rhombohedral or 
tetragonal lattice we obtained that the rotational part 
of A is trivial (Ro = I), that e2 = 0, i.e. e3 = - e l  = e,* 

*The fact that 82=0 and e3 = - e ,  = e was stated by Bonnet, 
Cousineau & Warrington (1981) for grain boundaries in hexagonal 
materials and by Lartigue (1988) for grain boundaries in rhombohe- 
dral materials. 

a x i s  of RIll I Y 
\ I 

f 

• X a x i s  

Fig. 1. The directions of the eigenvectors of A in two coordinate 
systems related by R±. 
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Table 1. The equivalence classes of specific rotations with ~, _< 21 and 6.7 _< r 2 _< 6"9 

r 2 m 

2.598 10 1 
12a 2 
12b 3 
13 1 
16 9 
18a 2 
18b 3 
21a 4 
21b 1 

2.611 12 1 
20 11 

2.627 11 1 
17 1 
21 10 

R e p r e s e n t a t i v e  
u 1) w 

1 0 1 
0 3 0 
3 3 3 
0 2 1 
0 27 3 
3 3 0 
0 9 3 
0 9 0 
0 3 0 

0 2 1 
0 10 . 11 

0 2 1 
1 0 1 
0 23 . 10 

R± M i l l e r - B r a v a i s  i n d i c e s  
O (°) qb (o) s in  q~ o f  s y m m e t r y  p l a n e s  

69.51 36.87 0.600 0 1 9 1 
60.00 60.00 0.866 1 1 3 
82.82 60.00 0.866 1 1 9 
87.80 67.38 0.923 2 0 9 0 
98.99 97.18 0.992 1 2 9 
90.00 90.00 1.000 

104.48 90.00 1.000 1 0 3 0 
81.79 81.79 0.990 2 2 9 
98.21 98.21 0.990 1 1 6 

87.61 67.11 0.921 11 0 . 50 0 
67.98 33.56 0.553 1 0 . 10 0 

87.39 66.80 0.919 5 0 . 23 0 
69.33 36.49 0.595 0 5 . 46 1 
92.73 74.35 0.963 1 0 4 0 

0 1 

1 2 

1 3 

1 2 
11 . 10 

1 2 
0 1 

10 . 23 

and that 

e = A s in~ .  (13) 

This formula provides a simple way to compute the 
parameter e. It is the product of two factors, the first 
of which is independent of R and the second indepen- 
dent of re. 

If the coincidence rotation R of a hexagonal lattice 
is described by the quadruple (m, U, V, W) as in 
Grimmer & Warrington (1985, 1987) and in Grimmer 
(1989b) then sin • will be obtained from: 

the form (11) of the quadruple representing R±; 
the formula (10) expressing the half-angle of a 

rotation in terms of the components of its quadruple; 
the relation sin • = 2 tan q~/(1 +tan  2 ~): 

2(3m2+ W2)1/2( U 2 -  UV-[- V2) 1/2 
sin ~ -  r(3m2+ W 2 ) + r _ l ( u 2  - U V +  V 2 )  " (14) 

Rotation symbols (m, u, v .  w) have been used to 
describe coincidence rotations R of rhombohedral 
lattices in Grimmer (1989a, d) and of rhombohedral 
and hexagonal lattices in Grimmer (1989c). Such a 
symbol describes a rotation the axis of which has 
Weber indices [u, v .  w] and the half-angle 0 of which 
is given by 

tan O={[3(u2+uv+v2)+r2w2]/3r2m2}U2. (15) 

The splitting R = R±Rll is expressed as 

(m, u, v .  w) = [3m2+ w 2, 3mu - (u +2v)w, 

3my + (2u + v)w.  0](m, 0, 0.  w). (16) 

It follows that the angle • of R± is given by 

2(3m 2+ w2)U213(u2+ uv+ v2)] '/2 
sin • -  (17) 

r(3m2+ w2)+ r-13(u2+uv+v 2) • 

4. An example: specific coincidence rotations for 
rhombohedral lattices with axial ratios close 

to the values for antimony and bismuth 

Antimony and bismuth have the same structure type 
with rhombohedral space group R3m. Eckerlin & 
Kandler (1971) give for the lattice parameters at 298 K 

2 a(t~) c(•)  re=C/a re 
Sb 4"3084 11.247 2.610 6"815 
Bi 4"54590 11"86225 2.609 6"809. 

Using the methods of Grimmer (1989d) one finds 
that there are three axial ratios in the range 6.7 _< r 2 _< 
6.9 that give rise to specific coincidence rotations with 
~; _< 21, i.e. 

p r 2 r Asb ABi 
27 6 6"75 2.598 0"00475 0.00435 
50 11 6"818 2.611 0"00026 0.00066 
23 5 6"9 2.627 0.00625 0"00665. 

Representatives of the equivalence classes with 27-  
21 and 6-7_< r2_< 6.9 are given in Table 1 together 
with qb, sin • and the Miller-Bravais indices of the 
planes perpendicular to 180 ° rotations contained in 
the equivalence class. [Only planes (hk.  l) satisfying 
h->0, k>-0, l->0 are given.] The rotation symbol (m, 
u, v .  w) of the representative has been normalized 
as proposed by Grimmer (1989d). [The determination 
of 2 according to his equation (73) makes use of this 
normalization.] 

Notice that e = A in the cases Z18a and ~18b of 
r=2.598 and e < A  in all other cases of Table 1; 

= O if w = 0 and • < O otherwise. 
Doni et al. (1986) were the first to give specific 

coincidence rotations for rhombohedral lattices with 
axial ratios close to rsb and rBi. They considered 
r=2.627 (their case p/q=5/17) .  Notice that r =  
2.598 and r=2.611 are closer to the experimental 
values of Sb and Bi than r = 2.627 and that r = 2.598 
gives rise to more coincidence rotations with a small 
value of Z. 
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Measurement of the Structure Factors of Diamond 

BY TOSHIHIKO TAKAMA, KOICHI TSUCHIYA,* KAZUYOSHI KOBAYASHIt AND SHIN'ICHI SATO 

Department of Applied Physics, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060, Japan 

(Received November 1988; accepted 7 February 1990) 

Abstract 

The absolute values of the structure factors of 
diamond are determined for nine low-order reflec- 
tions by measuring the X-ray Pendell6sung beats on 
the wavelength scale. Parallel-sided wafers of syn- 
thetic diamond single crystals are used for specimens. 
The deformation charge density and the Debye- 
Waller B factor are evaluated from the structure 
factors. The charge density of pile-up electrons is 
estimated to be 0.44(17) eA, -3 at the midpoint 
between the nearest-neighbour atoms. The density is 
slightly smaller than that determined by the powder 
diffraction method. The obtained B factor, 
0.142 (9) A, 2, is in good agreement with that evaluated 
to date from neutron diffraction measurements. 

1. Introduction 

Diamond is a typical covalent crystal in which each 
atom is linked tetrahedrally to four neighbouring 
atoms. The charge distribution is modified in the 
crystal so as to reflect the site symmetry (43 m) of the 
atomic positions. A weak X-ray intensity measured 
for the forbidden 222 reflection (Renninger, 1955) is 
clear evidence of this modification. The structure 
factors of diamond were determined by G&tlicher & 

*Present address: Department of Materials Science and 
Engineering, Technological Institute, Northwestern University, 
Evanston, Illinois 60201, USA. 

f Present address: Hokkaido Polytechnic College, Zenibako, 
Otaru 047-02, Japan. 

WSlfel (1959) (hereafter GW). They carried out an 
X-ray measurement of integrated intensity diffracted 
from a fine-powder sample and evaluated the struc- 
ture factors using kinematical diffraction theory. 

Lang & Mai (1979) (hereafter LM) observed the 
Pendell6sung fringes in the Bragg case from natural 
diamond crystals. They determined the structure fac- 
tor of the 311 reflection from the fringe spacing based 
on dynamical diffraction theory. The advantage of 
the Pendell6sung-fringe method is that no absolute 
intensity measurement is required but only the 
extremum positions need to be determined. However, 
as far as diamond is concerned, no data from the 
Pendell6sung-fringe method are available except the 
value for the 311 reflection by LM. 

The present authors have developed a technique 
of measuring the Pendelliisung beats on the 
wavelength scale and determined the structure factors 
of various substances (Takama & Sato, 1988; Kobay- 
ashi, Takama, Tohno & Sato, 1988). In the present 
study, the technique is applied to determine the struc- 
ture factors of diamond. The structure factors for the 
nine low-order reflections are used to evaluate the 
deformation charge density as well as the temperature 
factor. 

2. Measurements 

The synthetic diamond crystals were grown under a 
pressure of 5.0-5.5 GPa at 1700-1800 K with the help 
of a metal solvent. Granular crystals were cut to 
parallel-sided wafers having a {110} surface and about 
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